Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.151
Filtrar
1.
Biochemistry ; 63(3): 264-272, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190441

RESUMO

Vital to the treatment of influenza is the use of antivirals such as Oseltamivir (Tamiflu) and Zanamivir (Relenza); however, antiviral resistance is becoming an increasing problem for these therapeutics. The RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, a critical component of influenza viral replication machinery, is an antiviral target that was recently validated with the approval of Baloxavir Marboxil (BXM). Despite its clinical success, BXM has demonstrated susceptibility to resistance mutations, specifically the I38T, E23K, and A36 V mutants of PAN. To better understand the effects of these mutations on BXM resistance and improve the design of more robust therapeutics, this study examines key differences in protein-inhibitor interactions with two inhibitors and the I38T, E23K, and A36 V mutants. Differences in inhibitor binding were evaluated by measuring changes in binding to PAN using two biophysical methods. The binding mode of two distinct inhibitors was determined crystallographically with both wild-type and mutant forms of PAN. Collectively, these studies give some insight into the mechanism of antiviral resistance of these mutants.


Assuntos
Dibenzotiepinas , Influenza Humana , Morfolinas , Tiepinas , Humanos , Oxazinas , Piridinas/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Endonucleases/genética , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Piridonas/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico , Triazinas/farmacologia , Triazinas/uso terapêutico
2.
J Infect Chemother ; 30(3): 266-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37832825

RESUMO

To assess the extent of susceptibility to the four neuraminidase inhibitors (NAIs) approved in Japan of the epidemic viruses in the 2022-23 influenza season in Japan, we measured the 50 % inhibitory concentration (IC50) of oseltamivir, zanamivir, peramivir, and laninamivir in influenza virus isolates from patients. Viral isolation was done with specimens obtained prior to and after treatment, and the type/subtype was determined by RT-PCR using type- and subtype-specific primers. The IC50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. Virus isolates, one A(H1N1)pdm09 and 74 A(H3N2), were measured in the 2022-23 season. The geometric mean IC50s of the 74 A(H3N2) isolated prior to treatment were 0.78 nM, 0.66 nM, 2.08 nM, and 2.85 nM for oseltamivir, peramivir, zanamivir, and laninamivir, respectively, comparable to those of the previous ten studied seasons. No A(H3N2) with highly reduced sensitivity to any of the NAIs was found in the 2022-23 season prior to or after drug administration. These results indicate that the sensitivity to these four commonly used NAIs has been maintained, at least for A(H3N2), in the 2022-23 influenza season in Japan, after the 2020-21 and 2021-22 seasons when the prevalence of influenza was extremely low.


Assuntos
Ácidos Carbocíclicos , Guanidinas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Piranos , Ácidos Siálicos , Humanos , Zanamivir/farmacologia , Zanamivir/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Neuraminidase , Estações do Ano , Japão/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
3.
J Virol Methods ; 323: 114838, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914041

RESUMO

In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains unproven whether Golgi-localized intracellular NAs exhibit sialidase activity. We have developed a sialidase imaging probe, [2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenyl]-α-D-N-acetylneuraminic acid (BTP9-Neu5Ac). This probe is designed to be cleaved by sialidase activity, resulting in the release of a hydrophobic fluorescent compound, 2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenol (BTP9). BTP9-Neu5Ac makes the location of sialidase activity visually detectable by the BTP9 fluorescence that results from the action of sialidase activity. In this study, we established a protocol to visualize the sialidase activity of intracellular NA at the Golgi of influenza A virus-infected cells using BTP9-Neu5Ac. Furthermore, we employed this fluorescence imaging protocol to elucidate the intracellular inhibition of laninamivir octanoate, an anti-influenza drug. At approximately 7 h after infection, newly synthesized viral NAs localized at the Golgi. Using our developed protocol, we successfully histochemically stained the sialidase activity of intracellular viral NAs localized at the Golgi. Importantly, we observed that laninamivir octanoate effectively inhibited the intracellular viral NA, in contrast to drugs like zanamivir or laninamivir. Our study establishes a visualization protocol for intracellular viral NA sialidase activity and visualizes the inhibitory effect of laninamivir octanoate on Golgi-localized intracellular viral NA in infected cells.


Assuntos
Antivirais , Inibidores Enzimáticos , Vírus da Influenza A , Neuraminidase , Proteínas Virais , Humanos , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Neuraminidase/análise , Neuraminidase/antagonistas & inibidores , Imagem Óptica/métodos , Zanamivir/farmacologia , Proteínas Virais/análise , Proteínas Virais/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
6.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801046

RESUMO

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças Vasculares , Camundongos , Humanos , Animais , Zanamivir/farmacologia , Neuraminidase/química , Neuraminidase/farmacologia , Células Endoteliais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37817300

RESUMO

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 12,073 human influenza positive samples during 2022. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2022, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for 77% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically and genetically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2022. Of 3,372 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Feminino , Humanos , Austrália/epidemiologia , Galinhas , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Oseltamivir/farmacologia , Organização Mundial da Saúde , Zanamivir/farmacologia , Antivirais/farmacologia
8.
mBio ; 14(5): e0127323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37610204

RESUMO

Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico , Farmacorresistência Viral/genética , Neuraminidase/genética , Inibidores Enzimáticos/farmacologia
9.
Antiviral Res ; 217: 105701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567255

RESUMO

Neuraminidase inhibitors (NAIs) are recommended for influenza treatment and prevention worldwide. The most widely prescribed NAI is oral oseltamivir, while inhaled zanamivir is less commonly used. Using phenotypic neuraminidase (NA) enzymatic assays and molecular modeling approaches, we examined the ability of the investigational orally-dosed NAI AV5080 to inhibit viruses of the influenza A(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N9) subtypes and the influenza B/Victoria- and B/Yamagata-lineages containing NA substitutions conferring oseltamivir or zanamivir resistance including: NA-R292K, NA-E119G/V, NA-H274Y, NA-I122L/N, and NA-R150K. Broadly, AV5080 showed enhanced in vitro efficacy when compared with oseltamivir and/or zanamivir. Reduced AV5080 inhibition was determined for influenza A viruses with NA-E119G and NA-R292K, and for B/Victoria-lineage viruses with NA-I122N/L and B/Yamagata-lineage virus with NA-R150K. Molecular modeling suggested loss of the short hydrogen bond to the carboxyl group of AV5080 affected inhibition of NA-R292K viruses, whereas loss of the salt bridge with the guanidine group of AV5080 affected inhibition of NA-E119G. The resistance profiles and predicted binding modes of AV5080 and zanamivir are most similar, but dissimilar to those of oseltamivir, in part because of a guanidine moiety compensatory binding effect. Overall, our data suggests that AV5080 is a promising orally-dosed NAI that exhibited similar or superior in vitro efficacy against viruses with reduced or highly reduced inhibition phenotypes with respect to currently approved NAIs.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Antivirais/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Guanidina/metabolismo , Guanidinas/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/virologia , Neuraminidase/genética , Oseltamivir/farmacologia , Zanamivir/farmacologia
10.
Sci Immunol ; 8(84): eadg9459, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352373

RESUMO

The immune system eliminates pathogen intruders such as viruses and bacteria. To recruit immune effectors to virus-infected cells, we conjugated a small molecule, the influenza neuraminidase inhibitor zanamivir, to a nanobody that recognizes the kappa light chains of mouse immunoglobulins. This adduct was designed to achieve half-life extension of zanamivir through complex formation with the much-larger immunoglobulins in the circulation. The zanamivir moiety targets the adduct to virus-infected cells, whereas the anti-kappa component simultaneously delivers polyclonal immunoglobulins of indeterminate specificity and all isotypes. Activation of antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity promoted elimination of influenza neuraminidase-positive cells. A single dose of the conjugate protected mice against influenza A or B viruses and was effective even when given several days after infection with a lethal dose of virus. In the absence of circulating immunoglobulins, we observed no in vivo protection from the adduct. The type of conjugates described here may thus find application for both anti-influenza prophylaxis and therapy.


Assuntos
Influenza Humana , Zanamivir , Camundongos , Animais , Humanos , Zanamivir/farmacologia , Zanamivir/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Cadeias Leves de Imunoglobulina/uso terapêutico , Neuraminidase/uso terapêutico , Influenza Humana/prevenção & controle , Camundongos Endogâmicos BALB C
11.
Viruses ; 15(5)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37243142

RESUMO

In this study, we describe the input data and processing steps to find antiviral lead compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir). As a result, ligand-receptor interactions were modeled, and those necessary for binding were utilized as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of over half a million small organic substances. Orderly filtered moieties were investigated based on 2D- and 3D-predicted binding fingerprints disregarding the "rule-of-five" for drug likeness, and followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D procedures were calibrated before execution, and were then validated. Presently, two top-ranked substances underwent successful patent filing. In addition, the study demonstrates how to work around reported VS pitfalls in detail.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Inibidores Enzimáticos/farmacologia , Estudos Prospectivos , Zanamivir/farmacologia , Antivirais/uso terapêutico , Vírus da Influenza A/metabolismo , Neuraminidase/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle
12.
Nano Lett ; 23(11): 4844-4853, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220024

RESUMO

Here, we demonstrate the concerted inhibition of different influenza A virus (IAV) strains using a low-molecular-weight dual-action linear polymer. The 6'-sialyllactose and zanamivir conjugates of linear polyglycerol are optimized for simultaneous targeting of hemagglutinin and neuraminidase on the IAV surface. Independent of IAV subtypes, hemagglutination inhibition data suggest better adsorption of the heteromultivalent polymer than homomultivalent analogs onto the virus surface. Cryo-TEM images imply heteromultivalent compound-mediated virus aggregation. The optimized polymeric nanomaterial inhibits >99.9% propagation of various IAV strains 24 h postinfection in vitro at low nM concentrations and is up to 10000× more effective than the commercial zanamivir drug. In a human lung ex vivo multicyclic infection setup, the heteromultivalent polymer outperforms the commercial drug zanamivir and homomultivalent analogs or their physical mixtures. This study authenticates the translational potential of the dual-action targeting approach using small polymers for broad and high antiviral efficacy.


Assuntos
Glicosilação , Polímeros/química , Polímeros/farmacologia , Influenza Humana/tratamento farmacológico , Antivirais/química , Antivirais/farmacologia , Humanos , Zanamivir/química , Zanamivir/farmacologia
13.
Int J Pharm ; 641: 123081, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230371

RESUMO

Seasonal influenza virus infections cause a substantial number of deaths each year. While zanamivir (ZAN) is efficacious against oseltamivir-resistant influenza strains, the efficacy of the drug is limited by its route of administration, oral inhalation. Herein, we present the development of a hydrogel-forming microneedle array (MA) in combination with ZAN reservoirs for treating seasonal influenza. The MA was fabricated from Gantrez® S-97 crosslinked with PEG 10,000. Various reservoir formulations included ZAN hydrate, ZAN hydrochloric acid (HCl), CarraDres™, gelatin, trehalose, and/or alginate. In vitro permeation studies with a lyophilized reservoir consisting of ZAN HCl, gelatin, and trehalose resulted in rapid and high delivery of up to 33 mg of ZAN across the skin with delivery efficiency of up to ≈75% by 24 h. Pharmacokinetics studies in rats and pigs demonstrated that a single administration of a MA in combination with a CarraDres™ ZAN HCl reservoir offered a simple and minimally invasive delivery of ZAN into the systemic circulation. In pigs, efficacious plasma and lung steady-state levels of ∼120 ng/mL were reached within 2 h and sustained between 50 and 250 ng/mL over 5 days. MA-enabled delivery of ZAN could enable a larger number of patients to be reached during an influenza outbreak.


Assuntos
Influenza Humana , Zanamivir , Ratos , Animais , Suínos , Humanos , Zanamivir/uso terapêutico , Antivirais , Gelatina , Trealose
14.
Eur J Med Chem ; 255: 115410, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120995

RESUMO

The influenza virus remains a major health concern for mankind because it tends to mutate frequently and cause high morbidity. Influenza prevention and treatment are greatly aided by the use of antivirals. One such class of antivirals is neuraminidase inhibitors (NAIs), effective against influenza viruses. A neuraminidase on the virus's surface serves a vital function in viral propogation by assisting in the release of viruses from infected host cells. Neuraminidase inhibitors are the backbone in stoping such virus propagation thus helps in the treatment of influenza viruses infections. Two NAI medicines are licensed globally: Oseltamivir (Tamiflu™) and Zanamivir (Relanza™). There are two molecules that have acquired Japanese approval recently: Peramivir and Laninamivir, whereas Laninamivir octanoate is in Phase III clinical trials. The need for novel NAIs is due to frequent mutations in viruses and the rise in resistance against existing medication. The NA inhibitors (NAIs) are designed to have (oxa)cyclohexene scaffolds (a sugar scaffold) to mimic the oxonium transition state in the enzymatic cleavage of sialic acid. This review discusses in details and comprises all such conformationally locked (oxa)cyclohexene scaffolds and their analogues which have been recently designed and synthesized as potential neuraminidase inhibitors, thus as antiviral molecules. The structure-activity relationship of such diverese molecules has also been discussed in this review.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Neuraminidase , Antivirais/farmacologia , Antivirais/uso terapêutico , Zanamivir/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Oseltamivir/farmacologia , Influenza Humana/tratamento farmacológico , Guanidinas/farmacologia , Cicloexenos/uso terapêutico , Farmacorresistência Viral
15.
Medicina (Kaunas) ; 59(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37109600

RESUMO

Background and Objectives: The study of clinical pharmacokinetics of inhaled antivirals is particularly important as it helps one to understand the therapeutic efficacy of these drugs and how best to use them in the treatment of respiratory viral infections such as influenza and the current COVID-19 pandemic. The article presents a systematic review of the available pharmacokinetic data of inhaled antivirals in humans, which could be beneficial for clinicians in adjusting doses for diseased populations. Materials and Methods: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. A comprehensive literature search was conducted using multiple databases, and studies were screened by two independent reviewers to assess their eligibility. Data were extracted from the eligible studies and assessed for quality using appropriate tools. Results: This systematic review evaluated the pharmacokinetic parameters of inhaled antiviral drugs. The review analyzed 17 studies, which included Zanamivir, Laninamivir, and Ribavirin with 901 participants, and found that the non-compartmental approach was used in most studies for the pharmacokinetic analysis. The outcomes of most studies were to assess clinical pharmacokinetic parameters such as the Cmax, AUC, and t1/2 of inhaled antivirals. Conclusions: Overall, the studies found that the inhaled antiviral drugs were well tolerated and exhibited favorable pharmacokinetic profiles. The review provides valuable information on the use of these drugs for the treatment of influenza and other viral respiratory infections.


Assuntos
COVID-19 , Influenza Humana , Humanos , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Pandemias , Zanamivir/efeitos adversos
16.
BMC Infect Dis ; 23(1): 188, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991360

RESUMO

BACKGROUND: This study assessed the differences in daily virus reduction and the residual infectivity after the recommended home stay period in Japan in patients infected with influenza and treated with baloxavir (BA), laninamivir (LA), oseltamivir (OS), and zanamivir (ZA). METHODS: We conducted an observational study on children and adults at 13 outpatient clinics in 11 prefectures in Japan during seven influenza seasons from 2013/2014 to 2019/2020. Virus samples were collected twice from influenza rapid test-positive patients at the first and second visit 4-5 days after the start of treatment. The viral RNA shedding was quantified using quantitative RT-PCR. Neuraminidase (NA) and polymerase acidic (PA) variant viruses that reduce susceptibility to NA inhibitors and BA, respectively, were screened using RT-PCR and genetic sequencing. Daily estimated viral reduction was evaluated using univariate and multivariate analyses for the factors such as age, treatment, vaccination status, or the emergence of PA or NA variants. The potential infectivity of the viral RNA shedding at the second visit samples was determined using the Receiver Operator Curve based on the positivity of virus isolation. RESULTS: Among 518 patients, 465 (80.0%) and 116 (20.0%) were infected with influenza A (189 with BA, 58 with LA, 181 with OS, 37 with ZA) and influenza B (39 with BA, 10 with LA, 52 with OS, 15 with ZA). The emergence of 21 PA variants in influenza A was detected after BA treatment, but NA variants were not detected after NAIs treatment. Multiple linear regression analysis showed that the daily viral RNA shedding reduction in patients was slower in the two NAIs (OS and LA) than in BA, influenza B infection, aged 0-5 years, or the emergence of PA variants. The residual viral RNA shedding potentially infectious was detected in approximately 10-30% of the patients aged 6-18 years after five days of onset. CONCLUSIONS: Viral clearance differed by age, type of influenza, choice of treatment, and susceptibility to BA. Additionally, the recommended homestay period in Japan seemed insufficient, but reduced viral spread to some extent since most school-age patients became non-infectious after 5 days of onset.


Assuntos
Influenza Humana , Criança , Adulto , Humanos , Influenza Humana/tratamento farmacológico , Neuraminidase/genética , Pacientes Ambulatoriais , Japão , Estações do Ano , Antivirais/uso terapêutico , Antivirais/farmacologia , Zanamivir/uso terapêutico , Oseltamivir/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , RNA Viral/genética
17.
Rev. epidemiol. controle infecç ; 13(1): 16-21, jan.-mar. 2023. ilus
Artigo em Inglês, Português | LILACS | ID: biblio-1512817

RESUMO

Background and objectives: The COVID-19 pandemic and its consequent severe acute respiratory syndrome (SARS) have taken the lives of millions since 2020. The use of neuraminidase inhibitors is a promising alternative in treating this disease, with several studies on off-label use being conducted since the beginning of the pandemic, but none of them have a large sample size and analyze multiple risk factors. The purpose of this article is to identify possible associations between various factors and risk of hospitalization, need for ventilation and death, as well as the influence of the prescription of Zanamivir and Oseltamivir on these same indicators. Methods: In this transversal study, approximately 900,000 medical records from all regions of Brazil were collected from the Ministry of Health database, and after that, proper statistical analysis of the variables was performed. Results: Hospitalization was associated with gender, ethnicity, education, local urbanization, State, and its percentage of elderly, as well as the climate. The prescription of Zanamivir and Oseltamivir was associated with higher incidence of symptoms, lower hospitalization and death rate, and lower need for invasive and non-invasive ventilation. Medical records from146,160 patients were excluded due to SARS not caused by COVID-19. Conclusion: From this data, it is possible to draw a risk profile for hospitalization by SARS and consider the use of Zanamivir and Oseltamivir as a treatment for these patients.(AU)


Justificativa e objetivos: A pandemia de COVID-19 e sua consequente síndrome respiratória aguda grave (SRAG) levaram milhões de pessoas a óbito desde 2020. O uso de inibidores da neuraminidase é uma alternativa promissora no tratamento dessa doença, com vários estudos sobre o uso off-label sendo conduzidos desde o início da pandemia, mas nenhum que tenha um grande tamanho amostral e que analise vários fatores de risco. O objetivo deste artigo é identificar possíveis associações entre diversos fatores e risco de hospitalização, necessidade de ventilação e óbito, assim como a influência da prescrição de Zanamivir e Oseltamivir nos mesmos indicadores. Métodos: Neste estudo transversal, foi feito o levantamento de aproximadamente 900 mil prontuários de todas as regiões do Brasil, provenientes de dados do Ministério da Saúde, e em seguida foi realizado o tratamento estatístico adequado das variáveis. Resultados: A hospitalização foi associada a sexo, etnia, escolaridade, urbanização do local, Estado e porcentagem de idosos do mesmo, assim como o clima. Já a prescrição de Zanamivir e Oseltamivir foi associada a maior incidência de sintomas, menor taxa de hospitalização e óbito e menor necessidade de ventilação invasiva e não-invasiva. Foram excluídos 146.160 prontuários devido a SRAG não ocasionada pela COVID-19. Conclusão: Com esses dados, é possível traçar um perfil de risco para hospitalização por SRAG e considerar o uso de Zanamivir e Oseltamivir como tratamento para esses pacientes.(AU)


Justificación y objetivos: la pandemia Covid-19 y su consiguiente síndrome respiratorio agudo severo (SRAS) han muerto millones de personas desde 2020. El uso de inhibidores de la neuraminidasa es una alternativa prometedora en el tratamiento de esta enfermedad, con varios estudios sobre el uso off-label que se realiza desde el principio de la pandemia, pero ninguno que tenga un tamaño de muestra grande y analice múltiples factores de riesgo. El propósito de este artículo es identificar posibles asociaciones entre varios factores y el riesgo de hospitalización, necesidad de ventilación y muerte, así como la influencia de la prescripción de Zanamivir y Oseltamivir en los mismos indicadores. Métodos: En este estudio transversal, se encuestaron a los datos del Ministerio de Salud de aproximadamente 900,000 registros de todas las regiones de Brasil, después de que se realizó un tratamiento estadístico adecuado de las variables. Resultados: La hospitalización se asoció con género, etnia, educación, urbanización del sitio, Estado y porcentaje de ancianos, así como el clima. La prescripción de zanamivir y oseltamivir se asoció con la mayor incidencia de síntomas, menor hospitalización y tasa de mortalidad y menor necesidad de ventilación invasiva y no invasiva. Se excluyeron 146,160 registros médicos debido a SRAS no causado por Covid-19. Conclusión: con estos datos, es posible dibujar un perfil de riesgo para la hospitalización por SRAS y considerar el uso de zanamivir y oseltamivir como tratamiento para estos pacientes.(AU)


Assuntos
Humanos , Síndrome Respiratória Aguda Grave , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico , COVID-19 , Brasil , Estudos Transversais , Fatores de Risco
18.
Curr Opin Infect Dis ; 36(2): 124-131, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752709

RESUMO

PURPOSE OF REVIEW: The heavily suppressed global influenza activity during the coronavirus disease 2019 (COVID-19) pandemic is expected to return upon relaxation of travel restriction and nonpharmaceutical interventions (NPI). We reviewed the four marketed neuraminidase inhibitors (NAI e.g., oseltamivir, zanamivir, peramivir, laninamivir) and the only endonuclease inhibitor (baloxavir) on their clinical therapeutic effects and the ability of viral suppression in various groups of patients of different clinical settings based on the latest evidence. RECENT FINDINGS: Early initiation, preferably within 48 h of symptom onsets, of antiviral treatments with NAI and baloxavir, is crucial to produce favourable outcomes in patients with influenza infection. Updated evidence does not suggest routine use of combined antiviral agents in patients with influenza infection. Treatment-emergent resistant influenza variants may occur during NAI and baloxavir use, but it has no major impact on subsequent recovery. Early treatment of index patients with influenza infection and post-exposure prophylaxis in specific populations is crucial in preventing influenza transmission. SUMMARY: Antiviral therapy is the major defence therapeutically in the community and hospital settings to expedite early recovery and reduce influenza-related complications. Early treatment of index patients and post-exposure prophylaxis in susceptible close contacts may mitigate the spread of infection.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Neuraminidase , Zanamivir/uso terapêutico , Antivirais/uso terapêutico , Antivirais/farmacologia , Oseltamivir/uso terapêutico , Inibidores Enzimáticos/uso terapêutico
19.
Antivir Ther ; 28(1): 13596535221150746, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609161

RESUMO

BACKGROUND: Limited data exist for dosing of zanamivir in the setting of CVVH in the intensive care unit (ICU). Our objective is to report the pharmacokinetics and sieving coefficient (Sv) of zanamivir in patients receiving continuous venovenous hemofiltration (CVVH). METHODS: In this prospective observational study, patients of ≥18 years admitted to the ICU with a life-threatening Influenza A or B infection, treated with zanamivir i.v. undergoing CVVH were included. Patients received a zanamivir loading dose of 600 mg i.v., 12 h later followed by maintenance dosages two times daily according to the treating physician. Per patient, nine CFT plasma and nine ultrafiltrate samples were drawn on day 2 of treatment and analysed with a validated HPLC-MS/MS method. RESULTS: Four patients were included in the study. The zanamivir elimination half-life was prolonged with 5.6-9.9 h, compared to patients with normal renal function. A Sv of approximately 1.0 was identified, with unrestricted transport of zanamivir to the ultrafiltrate. CONCLUSIONS: Zanamivir is well cleared by CVVH. In absence of the possibility for therapeutic drug monitoring, the ultrafiltration rate seems as a good surrogate parameter to estimate the CLCVVH and may help guide the dosing of zanamivir.


Assuntos
Terapia de Substituição Renal Contínua , Hemofiltração , Humanos , Zanamivir/uso terapêutico , Hemofiltração/métodos , Estado Terminal/terapia , Espectrometria de Massas em Tandem
20.
Virus Res ; 325: 199039, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610656

RESUMO

Influenza infection causes substantial morbidity and mortality during seasonal epidemics and pandemics. Antivirals, including neuraminidase inhibitors, play an important role in the treatment of severely ill patients infected with influenza. Resistance is a key factor that can affect the efficacy of neuraminidase inhibitors (NAIs). It is a recommendation by regulatory authorities to monitor for resistance during the development of anti-influenza medications. An additional requirement by regulators is to examine amino acid sequences for minority species harbouring resistance substitutions. In a Phase III study of intravenous (IV) zanamivir respiratory samples were analysed for the presence of resistant quasi species using Next Generation Sequencing (NGS). In this study ten resistance substitutions, two of which were treatment emergent, were detected by NGS that otherwise would not have been detectable by Sanger sequencing. None of the substitutions were present at any other timepoints analysed. The effect these mutations have on clinical response is difficult to characterize; in fact, all patients from which these variants were isolated had a successful clinical outcome and the effect on clinical response was therefore likely minimal. Although NGS is becoming a routine method for nucleic acid sequencing and will detect substitutions previously undetected by Sanger sequencing, the value of this technique in identifying minority species with resistance substitutions that are clinically meaningful remains to be demonstrated, particularly with acute infections such as influenza.


Assuntos
Influenza Humana , Zanamivir , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Influenza Humana/tratamento farmacológico , Neuraminidase/genética , Oseltamivir/farmacologia , Zanamivir/farmacologia , Zanamivir/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...